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Abstract

A self-organizing classi®cation system for the arterial pressure pulse based on the ART2 (adaptive
resonance theory) network was developed. The system consists of a preprocessor and an ART2
recognition network. The preprocessor removes the arterial pressure pulse servo component signals from
Finapres, detects the systolic pressure points and divides the acquired signals into minimal cardiac
cycles. The ART2 network input is the minimal cardiac cycle detected by the preprocessor. The
classi®cation results can be used to assist physicians in evaluating the signs of abnormal and normal
autonomic control and has shown its clinical applicability for the examination of the autonomic nervous
system. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Focusing on the research studies of autonomic nervous system (ANS) [1], we know that
most standard laboratory tests of cardiovascular autonomic function rely on the measurement
of heart rate (HR) variability and blood pressure (BP), which are used as the indices of
evaluating the sympathetic and parasympathetic cardiomotor activities. However, the
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traditional clinical methods for assessing neural control of the circulation monitoring both HR
and BP have some defects. First, in order to acquire valid HR and BP, most measurements
must be obtained separately. This process is very costly and sometimes invasive. Second, short-
term signal acquisition and analysis, which provides insu�cient information for clinicians, is
widely adopted in the laboratory evaluation of autonomic re¯ex function. Third, most
measurement instruments have unsatisfactory sensitivity. These defects reduce the e�ciency of
clinicians in diagnosing patients and therefore delay the treatment. Accordingly [2], the ideal
mode of measurement should be noninvasive, applicable over a wide range of conditions,
reproducible, easy to implement and require an acceptable learning curve. Moreover, the data
acquisition should be continuous, hands o� and bad data should be automatically rejected.
Last, the ideal method should be a�ordable. The ®nger arterial pressure (Finapres) device, by
which the arterial pressure pulse, BP and HR are measured noninvasively in the ®nger,
provides a beat-to-beat alternative for continuous recordings and long-term examination. The
contour of the arterial pressure pulse generated by Finapres generally correlates well with
intra-arterial measurements from the radial or brachial artery [3,4].
Many researchers have developed various methods to analyze beat-to-beat BP and HR

variability in the past. The analysis of BP and HR variability in the frequency domain has
been useful in pathophysiologic research into the nature of cardiovascular regulation. DeBoer
et al. [5] presented two approaches: the so-called the interval spectrum and the spectrum of
counts to analyze the HR variability. Karemaker [6] used the interval spectrum to estimate the
spectrum of BP variability. Saul et al. [7] presented the transfer-function analysis for BP and
HR variability. However, there is still inadequate research into the sensitivity and speci®city of
the analysis of cardiovascular variability based on noninvasive continuous recording of the
arterial pressure pulse. Chiu et al. [8] presented methods for correctly acquiring the signals
from a Finapres device. The Chiu method allows simultaneous recording, storage and
analyzing of the acquired signals. From the results of the preliminary analysis, Chiu et al.
found that the power spectra of pulse signals with servo components removed had more
preferable results than those from the original signals. Also, the continuously acquired pulse
signals could be used to derive physiological data the same as that from the RS232 Finapres
port (providing discrete HR and BP data). This fact convinced us that one could analyze the
Finapres signals using continuously acquired pulse signals instead of signals from the RS232
port. Chiu et al. also demonstrated that continuous recording of beat-to-beat arterial pressure
pulse signals could a�ord valuable information to understand central autonomic regulation [9].
Let us ®rst review the physiological functions of the pulse waveform in the time domain. As
the scheme shown in Fig. 1, there are many characteristic parameters to indicate the di�erent
physiological states, such as A wave, P (percussion) wave, T (tidal) wave, D (dichotic) wave, U
(up stroke) point, V notch (i.e. Dichotic notch) and the height of Dh, etc. The corresponding
physiological state for each segment is as follows. The segment between Q and U represents
the pulse transmission time. The segment between V and D represents the diastolic shut time.
The segment of U and P represents the systolic ejection time. The segment between U and U '
represents one cardiac cycle. The segment between P and V represents the ejection slow time.
Therefore, the shape of the pulse waveform provides important information to doctors for

diagnosis. In the traditional methods, the doctor diagnosed the shape and position of every
parameter of the pulse using their own judgements. Recently, many mathematical methods
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have been presented to assist doctors in judging the shape of a pulse, such as the slope method.
However, these methods are not easy to use. It is di�cult to judge di�erent kinds of pulses
using a ®xed threshold. It is desirable for a recognition system to adjust its threshold in
association with the changes in the environment. In this study, we adopted an adaptive
resonance theory neural network (ART2) [10] recognition system, implemented using the
learning and self-organizing mechanisms of template patterns as in the decision-making
processes of human beings. The ART2 can be used to categorize continuous pulse signals from
a Finapres device.
The main focus of this study was to develop a self-organizing pulse-signal classi®cation

system for the arterial pressure pulse. Moreover, the classi®cation results of the ART2
network, provides an alternative method for evaluating autonomic functions and were used to
assist physicians in evaluating the beat-to-beat arterial pressure pulse for signs of abnormal
and normal autonomic control. The system con®guration is shown in Fig. 2. The ART2-based
classi®cation system includes a preprocessor and a recognition system. The continuous
recording of arterial pressure pulse is obtained noninvasively, using the ®nger
photoplethysmography technique, i.e. Finapres blood pressure monitor model 2300, Ohmeda.
Finapres signals are sent to an external device through two ports: BP (including systolic
pressure, diastolic pressure and mean pressure) and HR can be obtained from the RS232
output port and the arterial pressure pulse signal obtained from the analog output (AO) port.
The input signal from the preprocessor is a continuously acquired signal from the Finapres
analog output. The output results from the preprocessor are the minimal cardiac cycles. These
cardiac cycles are the input for ART2 networks. ART2 categorizes these input patterns
adaptively. The ART2 will be discussed in greater detail later in this paper.

Fig. 1. The characteristic parameters of the ECG and pulse waveform.
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2. Material and methods

2.1. Finapres

The Finapres device operation, which is fully automated, is described brie¯y as follows. As
one knows, the ability to measure arterial pressure rapidly and noninvasively through the
®nger involves the principle of arterial wall unloading. The blood volume under an in¯atable
®nger cu� is measured with an infrared plethysmograph and kept to a constant set point value
by controlling the cu� pressure in response to volume changes in the ®nger artery. By means of
a built-in servo adjustment mechanism, a proper volume-clamped set point is established and
adjusted at regular intervals. In other words, the high-speed servo system rapidly in¯ates and
de¯ates the cu� to maintain the photoplethysmographic output constant at the unloaded state.
However, this procedure interrupts the blood pressure recording (usually for 2±3 beats every 70
beats). Note that the regular servo adjustment is essential to keep the ®nger arteries fully
unloaded and the transmural pressure equal to zero. At zero transmural pressure, the arterial
®nger pressure is equal to the cu� pressure. The modules, which cause the regular servo
adjustment of the continuously acquired pulse signal, are called servo components. In our
previous study [8], we used a personal computer combined with a general-purpose data
acquisition board and LabVIEW environment to develop techniques for acquiring signals
correctly from a Finapres monitor. These acquired signals can then be recorded, stored and
analyzed simultaneously in real time.

2.2. Preprocessor

The continuous pulse signals are ®rst sent through a preprocessor before going to the ART2
for arterial pressure pulse classi®cation. The key functions of the preprocessor are to remove
the servo components from the continuous recording of arterial pressure pulse signals from

Fig. 2. System con®guration.
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Finapres and to divide the acquired signals into minimal cardiac cycles. As one knows, the
length of each beat-to-beat cardiac cycle can be ¯uctuated. However, the input patterns in the
ART2 input layer network must be of equal length. Therefore, the reason the acquired signals
are divided into minimal cardiac cycles is to create the equal length input patterns for the
ART2 network. The procedures of the preprocessor are listed below with an example to
illustrate the extracted minimal cardiac cycle as shown in Fig. 3.

2.2.1. Initialization
Let x(k ) be the pulse signal acquired from the Finapres AO port. The maximum value

within the very ®rst 3 s duration input pulse signal is acquired. The sampling rate to acquire
the Finapres signal was set at 60 Hz in this research. Thus, the time index for the ®rst wave-
peak (i.e. the systolic blood pressure), P1, can be found as follows:

P1 � arg max�x�k��, 1RkR180

Note that arg max[x(k )] represents the argument of function x(k ) in which the maximum value
occurred. The mean, m and standard deviation, sd, of the HR periods (in seconds) from the
original HR data provided by the Finapres RS232 port are calculated. Let IP be the ceiling of
(m ÿ sd ) � 60 and IV be the ceiling of (m + 3sd ) � 60. After P1, the time index for the ®rst
wave valley (i.e. the diastolic blood pressure), V1, can then be obtained using:

V1 � arg min�x�k��, P1RkRP1 � IV

Similarly, arg min[x(k )] is the argument of function x(k ) in which the minimum value occurs.

2.2.2. Searching wave peaks and valleys
After P1 and V1 are found, the remaining of Pi's and Vi's can be derived recursively using

the following formulas:

Pi � arg max�x�k��, Viÿ1RkRViÿ1 � IP

Fig. 3. An example to illustrate the extracted minimal cardiac cycle.

C.-C. Chiu et al. / Computers in Biology and Medicine 30 (2000) 71±88 75



Vi � arg min�x�k��, PiRkRPi � IV

2.2.3. Removing the servo components
Two parameters are de®ned below for removing the servo components:

Drk � x�Pk� ÿ x�Vk�
and

Dlk � x�Pk�1� ÿ x�Vk�:
If either Drk or Dlk is less than 25 mm Hg, then the entire duration from the time index Pk

to Vk + 1 is treated as the dynamic servo segment and therefore, should be removed from the
original AO signal.

2.2.4. Extracting the minimal cardiac cycles
Two parameters are de®ned below for extracting the minimal cardiac cycles. Rmin is the

minimal duration for the U±P segment (Fig. 1) in all input cardiac cycles. Fmin is the minimal
duration for the P±U ' segment (Fig. 1) in all input cardiac cycles. The length of the desired
minimal cardic cycle is (Rmin+Fmin) seconds. The portion of each minimal cardiac cycle is
truncated from each Pi point to the front Rmin in length and to the rear Fmin in length. Note
that the sampling rate to acquire the Finapres signal is 60 Hz.

Rmin � min
8i
f�Pi ÿ Viÿ1�=60g

Fmin � min
8i
f�Vi ÿ Pi �=60g

The truncated minimal cardiac cycles, which contain signi®cant physiological information
from the cardiac cycles, are the inputs to the ART2 network for recognition. An example to
illustrate the extracted minimal cardiac cycle is shown in Fig. 3.

2.3. ART2 neural network

Computing with arti®cial neural networks (ANNs) is one of the fastest growing ®elds in the
history of arti®cial intelligence (AI), largely because ANNs can be trained to identify nonlinear
patterns between input and output values and can solve complex problems much faster than
digital computers [11]. There have been a number of neural network industrial applications
[12]. Some neural networks have learning and self-organizing abilities. Researchers have found
one answer to these questions through the attempt to solve a basic design problem, called the
stability-plasticity dilemma, faced by all intelligent systems capable of autonomously adapting
in real time to unexpected changes in their world. A developing theory called adaptive
resonance theory (ART) suggests a solution to this problem [10]. ART is a neural network that
self-organizes stable recognition code patterns in real-time in response to arbitrary sequences of
input patterns. In this study, a self-organizing neural network (ART2) was employed to
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categorize the continuous pulse signals. Due to its wide range of applicability and its ability to
learn complex and nonlinear relationships, ART2 was applied to classify the pulse signals. In
addition, ART2 has made strong advances in continuous speech recognition and synthesis,
pattern recognition, classi®cation of noisy data, nonlinear feature detection and other ®elds.
ART2 is capable of high-speed parallel signal processing in real time. When used in medical
diagnosis, ART2 is not a�ected by factors such as human fatigue, emotional states and
monotony. Therefore, ART2 is capable of rapid identi®cation, analysis of conditions and
diagnosis in real time.
ART networks encode new input patterns, in part, by changing the weights, or long-term

memory (LTM) traces, of a bottom-up adaptive ®lter. A typical ART2 architecture is shown in
Fig. 4. This ®lter is contained in pathways leading from a feature representation ®eld (F1) to a
category representation ®eld (F2), whose nodes undergo cooperative, (sometimes called
competitive learning ) shared by many other adaptive pattern recognition and associative
learning models. In an ART network, however, it is a second, top-down adaptive ®lter that
leads to the crucial property of code self-stabilization. Such top-down adaptive signals play the
role of learned expectations in an ART system. They enable the network to carry out attention
priming, pattern-matching and self-adjusting parallel search. One of the key insights of the
ART design is that the top-down attention and intentional, or expectation, mechanisms are
necessary to self-stabilized learning in response to an arbitrary input environment.
In Fig. 4, the ®elds F1 and F2, as well as the bottom-up and top-down adaptive ®lters, are

contained within ART's attentional subsystem. An auxiliary orienting subsystem becomes active

Fig. 4. A typical ART2 architecture.
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when a bottom-up input to F1 fails to match the learned top-down expectation read-out by the
active category representation at F2. In this case, the orienting subsystem is activated and
causes a rapid reset of the active category representation at F2. This reset event automatically
informs the attentional subsystem to proceed with a parallel search. Alternative categories are
tested until either an adequate match is found or a new category is established. The search
remains e�cient because the search strategy is updated adaptively throughout the learning
process. The search proceeds rapidly, relative to the learning rate. Thus, signi®cant changes in
the bottom-up and top-down adaptive ®lters occur only when a search ends and a matched F1
pattern resonates within the system. The bottom-up adaptive ®ltering, code or hypothesis
selection, read-out of a top-down learned expectation, matching and code reset process cycle
shows that, within an ART system, adaptive pattern recognition is a special case of the more
general cognitive process of discovering, testing, searching, learning and recognizing
hypotheses. The fact that learning within an ART system occurs only within a resonant state,
enables such a system to solve the design tradeo� between plasticity and stability. Plasticity, or
the potential for rapid change in the LTM traces, remains intact inde®nitely, thereby enabling
an ART architecture to learn about future unexpected events until it exhausts its full memory
capacity.
Learning within a resonant state either re®nes the code of a previously established

recognition code, based upon any new information that the input pattern may contain, or
initiates code learning within a previously uncommitted set of nodes. For example, a new
analog input pattern can be added at any time to the ART2. The system will then search the
established categories. If an adequate match is found, possibly on the initial search cycle, the
LTM category representation is re®ned, if necessary, to incorporate the new pattern. If no
match is found and the full coding capacity is not yet exhausted, a new category is formed,
with previously uncommitted LTM traces encoding the STM pattern established by the input.
In an ART architecture, by contrast, a search takes place only as a recognition code is being
learned and the search maintains its e�ciency as learning goes on. Self-stabilization of prior
learning is achieved via the dynamic bu�ering provided by a read-out of a learned top-down
expectation, not by switching o� plasticity or restricting the class of admissible inputs. In
general, within the ART architecture, once learning self-stabilizes within a particular
recognition category, the search mechanism is automatically disengaged. Thereafter, that
category can be directly activated, or accessed, with great rapidity and without the need for a
search by any of its input exemplars.
The criterion for an adequate match between an input pattern and a chosen category

template is adjustable in the ART architecture. The matching criterion is determined by a
vigilance parameter that controls activation of the orienting subsystem. All other things being
equal, higher vigilance imposes a stricter matching criterion, which in turn partitions the input
set into ®ner categories. Lower vigilance tolerates greater top-down/bottom-up mismatches at
F1, leading in turn to coarser categories. In addition, at every vigilance level, the matching
criterion is self-scaling: a small mismatch may be tolerated if the input pattern is complex,
while the same feature mismatch would trigger a reset if the input is represented only by a few
features. Note that the vigilance parameter r is set between 0 and 1. Detailed ART2 learning
and self-organizing principles are described in the Appendix.
For simplicity, we henceforth consider an ART2 system in which F2 makes a choice and in
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which e is set to be equal to 0. Thus, kxk � kuk � kqk � 1: The continuously di�erentiable
signal function f(�) in the following equation is used for simulations. The ART2 parameters
employed in the present system are shown in Table 1.

f�x� �

8><>:
2qx2

x2 � q2
, if 0Rx < q

0, if x > q

3. Experimental results and discussion

In this study, the ART2 network was used to categorize continuous pulse signals from the
Finapres device. In order to show the clinical applicability, two states of examination were
undertaken. The supine state provides the baseline for the experiments. On the other hand, a
608 head-up tilt can be used to observe the autonomic control especially for the assessment of
sympathetic activity. For each sample, a continuous pulse signal, containing both supine and
608 tilt states, was recorded. The total length of a pulse signal for each sample was 36,000
points (i.e. 10 min; sampling rate is 60 Hz) with each state containing approximately 18,000
points (i.e. the 5 min period). The acquired waveform was then sent to the preprocessor,
presented in the previous section, to remove the servo components and extract the minimal
cardiac cycles. The portion of each minimal cardiac cycle was then treated as a single input
pattern for the ART2 network. These single patterns were sent to the ART2 network for
categorization. Since the ART2 network is a self-organizing pattern recognition system, no
training is needed for pattern recognition.
Two examples of ART2 recognition results, one for the normal case and one for the

NIDDM (non-insulin-dependent diabetes mellitus) patient, are illustrated here to show the
e�ectiveness of this method in evaluating the signs of abnormal and normal autonomic control.
The acquired signal for the normal case, after removing the servo components, is shown in Fig.
5. The recognition templates (i.e. LTM) of ART2 for the normal case are shown in Fig. 6.
There are ®ve recognition categories. Applying the ART2 network to classify every minimal
cardiac cycle, one can obtain the status distribution plot (SDP) as shown in Fig. 7. The SDP is
helpful to determine the reasonable boundary related to di�erent examination states in the

Fig. 5. An example of the acquired signal for the normal case from Finapres after removing the servo components.
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Table 1

ART2 parameters employed in the present system

a b c d y e r

De®nition feedback parameter in F1 layer feedback parameter
in F1 layer

parameter in
orienting subsystem

activation level in
F2 neuron

threshold learning
rate

vigilance
parameter

Value 5 5 0.08 0.9 0.01 0.10 0.98
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continuous waveform. It is clear that the changing index from supine to 608 incline is at the
sequence number 244 in Fig. 7. We can observe that the reasonable changing index is at
number 290 with the assistance of the ART2. Two spectra are shown in Fig. 8. The power
spectral density (PSD) [13,14] of the continuously acquired arterial pressure pulse from Finapre
for the normal case, with the removal of servo components, at the supine state is shown in Fig.
8(a). Also, the PSD of the continuously acquired arterial pressure pulse for the normal case,
with the removal of servo components, at the 608 incline is shown in Fig. 8(b). Note that LF
stands for the frequency range from 0.07 to 0.15 Hz, corresponding primarily to the
sympathetic nerve activity. On the other hand, HF stands for the frequency range from 0.15 to
0.5 Hz corresponding primarily to the parasympathetic nerve activity [15]. For the normal case,
the power spectra are increased in both the LF and HF areas when the states changed from
the supine to the incline position.
The acquired signal for the NIDDM patient after removing the servo components is shown

in Fig. 9. The recognition templates (i.e. LTM) of ART2 for this case are shown in Fig. 10.
There are ®ve recognition categories. Note that the matching criterion is determined by the
vigilance parameter. For each sample, the same ART2 parameters are shown in Table 1 were
applicable. The results in Fig. 10 are clearly di�erent from those depicted in Fig. 6. These
categories can be useful tools for diagnosis in clinical application. Applying the ART2 network
to classify every minimal cardiac cycle, one can obtain a status distribution plot (SDP), as
shown in Fig. 11. The changing index from supine to 608 incline is at the sequence number 525
(note that it is marked manually by the physician). However, for the signal of the NIDDM
patient, it is somehow di�cult for us to point out where the changing index is. In Fig. 12(a),
the PSD of the continuously acquired arterial pressure pulse from Finapre for the NIDDM
patient with the removal of servo components in the supine state is shown. Also, the PSD of
the continuously acquired arterial pressure pulse with the removal of servo components in the

Fig. 6. The recognition categories of ART2 for the normal case shown in Fig. 5.

Fig. 7. Status distribution plot (SDP) for the normal case. Lateral axis is the continuous input numbers of minimal
cardiac cycles. Straight axis: Category 1±5 denote ®ve classi®ed patterns.
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608 incline state is shown in Fig. 12(b). Note that the power spectra makes no obvious
increases in both the LF and HF areas when the states changed from supine to incline for the
NIDDM case.
The examples illustrated above demonstrate that the self-organizing arterial pressure pulse

classi®cation technique using ART2 has led to new insights in cardiovascular control. This

Fig. 8. (a) The power spectral density (PSD) of the continuously acquired arterial pressure pulses from Finapre for
the normal case with the servo components removed, in the supine examination state. (b) The PSD of the

continuously acquired arterial pressure pulse for the normal case with the servo components removed in a 608
incline.

Fig. 9. An example of the acquired signal from Finapres after removing the servo components for the NIDDM
patient.
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technology may also be used to study the involvement of the autonomic nervous system in the
evolution of many diseased states. The technique provides at least three novel diagnostic tools
for the clinical neurophysiology laboratory. First, the pieces a�ected by unexpected arti®cial
motions (i.e. physical disturbance) can be determined easily by the ART2 network according to
the status distribution plot. Therefore, clean segments corresponding to each clinical
examination state can be obtained from the continuously acquired waveform. Second, a few
categories will be created after applying the ART2 network to the input patterns (i.e. minimal
cardiac cycles). The vigilance parameter of the ART2 network regulates the category
coarseness of the input pattern. As the vigilance parameter becomes closer to 1.0, the system
becomes more sensitive to the di�erence between the input pattern and the associated pattern.
These pulse signal categories can then be useful to physicians for diagnosis in clinical
application. Third, the status distribution plot provides an alternative method to assist
physicians in evaluating the signs of abnormal and normal autonomic control. For instance, it
is clear that there are more di�erent categories around the moment of states when the
monotoring position is changed from supine to incline for the normal case as shown in Fig. 7
than that of the ones for the NIDDM patient in Fig. 11. The possible reason is that this
arti®cial motion performs more obviously for the normal case than in the NIDDM patient.
Therefore, clinicians need not look at actual arterial pressure pro®les after being trained to
read the status distribution plots. The future work is to undertake a vigorous test of the
speci®city and sensitivity of diagnosis by the proposed method. Finally, it should be noted that
generally group averages are used in the study of the PSD analysis being used to evaluate
autonomic function in the context of diabetic neuropathy. The inherent variability of the PSD
analysis makes application to a speci®c patient a hazardous approach. Therefore, the results of
PSD analysis will not be used to change the course of a speci®c patient for the time being.

Fig. 10. The recognition categories of ART2 for the NIDDM patient shown in Fig. 9.

Fig. 11. Status distribution plot (SDP) for the NIDDM patient. Lateral axis is the continuous input numbers of
minimal cardiac cycles. Straight axis: Category 1±5 denote ®ve classi®ed patterns.
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4. Conclusions

A self-organizing classi®cation system for the arterial pressure pulse based on the ART2
(adaptive resonance theory) network was developed. The technique provides at least three
novel diagnostic tools in the clinical neurophysiology laboratory. First, the pieces a�ected by
unexpected arti®cial motions (i.e. physical disturbance) can be determined easily by the ART2
network according to the status distribution plot. Second, a few categories will be created after
applying the ART2 network to the input patterns (i.e. minimal cardiac cycles). These pulse
signal categories can be useful to physicians for diagnosis in conventional clinical applications.
Third, the status distribution plot provides an alternative method to assist physicians in
evaluating the signs of abnormal and normal autonomic control. The proposed method has
shown its clinical applicability for the examination of the autonomic nervous system.
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Fig. 12. (a) The PSD of the continuously acquired arterial pressure pulse from Finapre for the NIDDM patient
with the removal of servo components at the supine examination state. (b) The PSD of the continuously acquired

arterial pressure pulse for the NIDDM patient with the removal of servo components at the 608 incline.
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Appendix A

The potential, or STM activity, zi of the ith node at any one of the F1 processing stages, i.e.
si, xi, vi, ui, pi and qi, obeys a membrane equation of the form:

2 d

dt
zi � ÿAzi � �1ÿ Bzi �J�i ÿ �C�Dzi �Jÿi �A:1�

(i � 1, . . . ,M). Ji
+ is the total excitatory input to the ith node and Ji

ÿ is total inhibitory input.
In the absence of all inputs, zi decays to 0. The dimensionless parameter $ represents the ratio
between the STM relaxation time and the LTM relaxation time.

0 <2� 1 �A:2�
Also, B00 and C00 in the F1 equation of the ART2. Thus the STM equations, in singular

form as $4 0, reduce to

Vi � J�i
A�DJÿi

�A:3�

In this form, the dimensionless Eqs. (A.4)± (A.10) characterize the STM activities, si, xi, vi,
ui, pi and qi, are computed at F1:

si � Ii � aui �A:4�

xi � si
e� kSk ; e is a constant, 0 < e� 1 �A:5�

pi � ui �
XN
j�1

g� yi �ŵji �A:6�

qi � pi
e� kPk �A:7�

vi � f�xi � � bf�qi � �A:8�

ui � vi
e� kVk �A:9�

Du �
XM
i�1
jui�k� 1� ÿ ui�k�j �A:10�

Where S0[s1, s2, . . . ,sM], V0[v1,v2, . . . ,vM] and P0[ p1,p2, . . . ,pM].6�6denotes the L2-norm of
a vector. yj is the STM activity of the jth F2 node and wji is the LTM weight in the pathway
from the jth F2 node to the ith F1 node. The nonlinear signal function f(�) in Eq. (A.11) is
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chosen as follows.

f�x� �

8><>:
2qx2

x2 � q2
, if 0Rx < q

0, if x > q

�A:11�

which is continuously di�erentiable. Since the variables xi and qi are always between 0 and 1
(Eqs. (A.5) and (A.7)), the function values f(xi) and f(qi) also stay between 0 and 1.
Alternatively, the signal function f(x ) is chosen to saturate at high x values. This causes the
e�ect of ¯attening the pattern details.
The key properties of F2 are the contrast enhancement of ®ltered F1 4 F2 input patterns

and reset or enduring inhibition of active F2 nodes whenever a pattern is mismatched at F1,
which is large enough to activate the orienting subsystem. Contrast enhancement is carried out
by competition within F2. F2 makes a choice when the node receives the largest total input,
which quenches activity in all other nodes. In other words, let Tj be the summed ®ltered F14
F2 input to the jth F2 nodes:

Ti �
XM
i�1

piwij �A:12�

(j � M� 1, . . . ,N). Then F2 is said to make a choice if the Jth F2 node becomes maximally
active, while all other nodes are inhibited, when

TJ� maxfTj: j �M� 1 . . .N g �A:13�
F2 reset may be carried out in several ways, one being the use of a gated dipole ®eld

network in F2. When a nonspeci®c arousal input reaches an F2 gated dipole ®eld, nodes are
inhibited or reset in proportion to their former STM activity levels. Moreover, this inhibition
endures until the bottom-up input to F1 shuts o�. Such a nonspeci®c arousal wave reaches F2,
via the orienting subsystem, when a su�ciently large mismatch occurs at F1. When F2 makes a
choice, the main element of the gated dipole ®eld dynamics may be characterized as:

g� yi � �
�
d, if the neuronin F2 receives largest input

0, otherwise
�A:14�

The top-down and bottom-up LTM trace equations for ART2 are determined using

Top-down �F24F1�: d

dt
wji � g� yj �� pi ÿ wji � �A:15�

Bottom-up �F14F2�: d

dt
wij � g� yj �� pi ÿ wij � �A:16�

If F2 makes a choice, (A.13)± (A.16) imply that, if the Jth F2 node is active, then

d

dt
wJi � d� pi ÿ wJi � � d�1ÿ d�

�
ui

1ÿ d
ÿ wJi

�
�A:17�
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and,

d

dt
wJi � d� pi ÿ wJi � �A:18�

with 0< d<1. For all j$J, �d=dt�wJi � 0 and �d=dt�wij � 0:
In contrast, the computation of an analog pattern match does require pattern information.

The degree of match between an STM pattern at F1 and an active LTM pattern is determined
by the vector R0[r1,r2, . . . ,rM], with

ri � ui�k� � cpi�k�
e� kU�k�k � kcP�k�k �A:19�

The orienting subsystem is assumed to reset F2 whenever an input pattern is active and

�kRk � e� < r, �A:20�
where the vigilance parameter r is set between 0 and 1.
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